Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We find a strong separation between two natural families of simple rank one theories in Keisler's order: the theories $$T_m$$ reflecting graph sequences, which witness that Keisler's order has the maximum number of classes, and the theories $$T_{n,k}$$, which are the higher-order analogues of the triangle-free random graph. The proof involves building Boolean algebras and ultrafilters ``by hand'' to satisfy certain model theoretically meaningful chain conditions. This may be seen as advancing a line of work going back through Kunen's construction of good ultrafilters in ZFC using families of independent functions. We conclude with a theorem on flexible ultrafilters, and open questions.more » « less
- 
            Dividing asks about inconsistency along indiscernible sequences. In order to study the finer structure of simple theories without much dividing, the authors recently introduced shearing, which essentially asks about inconsistency along generalized indiscernible sequences. Here we characterize the shearing of the random graph. We then use shearing to distinguish between the random graph and the theories $$T_{n,k}$$, the higher-order analogues of the triangle-free random graph. It follows that shearing is distinct from dividing in simple unstable theories, and distinguishes meaningfully between classes of simple unstable rank one theories. The paper begins with an overview of shearing, and includes open questions.more » « less
- 
            This paper builds model-theoretic tools to detect changes in complexity among the simple theories. We develop a generalization of dividing, called shearing, which depends on a so-called context c. This leads to defining c-superstability, a syntactical notion, which includes supersimplicity as a special case. The main result is a separation theorem showing that for any countable context and any two theories T1, T2, such that T1 is c-superstable and T2 is c-unsuperstable, and for arbitrarily large mu, it is possible to build models of any theory interpreting both T1 and T2 whose restriction to tau(T1) is mu-saturated and whose restriction to tau(T2) is not aleph1-saturated. (This suggests “c-superstable” is really a dividing line.) The proof uses generalized Ehrenfeucht-Mostowski models, and along the way, we clarify the use of these techniques to realize certain types while omitting others. In some sense, shearing allows us to study the interaction of complexity coming from the usual notion of dividing in simple theories and the more combinatorial complexity detected by the general definition. This work is inspired by our recent progress on Keisler’s order, but does not use ultrafilters, rather aiming to build up the internal model theory of these classes. https://doi.org/10.1090/tran/8513more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
